Bi-CMR: Bidirectional Reinforcement Guided Hashing for Effective Cross-Modal Retrieval
نویسندگان
چکیده
Cross-modal hashing has attracted considerable attention for large-scale multimodal data. Recent supervised cross-modal methods using multi-label networks utilize the semantics of multi-labels to enhance retrieval accuracy, where label hash codes are learned independently. However, all these assume that annotations reliably reflect relevance between their corresponding instances, which is not true in real applications. In this paper, we propose a novel framework called Bidirectional Reinforcement Guided Hashing Effective Cross-Modal Retrieval (Bi-CMR), exploits bidirectional learning relieve negative impact assumption. Specifically, forward procedure, highlight representative labels and learn reinforced by intra-modal semantic information, further adjust similarity matrix. backward adjusted matrix used guide matching instances. We construct two datasets with explicit instance pairs based on benchmark datasets. The Bi-CMR evaluated conducting extensive experiments over Experimental results prove superiority four state-of-the-art terms effectiveness.
منابع مشابه
Pairwise Relationship Guided Deep Hashing for Cross-Modal Retrieval
With benefits of low storage cost and fast query speed, crossmodal hashing has received considerable attention recently. However, almost all existing methods on cross-modal hashing cannot obtain powerful hash codes due to directly utilizing hand-crafted features or ignoring heterogeneous correlations across different modalities, which will greatly degrade the retrieval performance. In this pape...
متن کاملAttribute-Guided Network for Cross-Modal Zero-Shot Hashing
Zero-Shot Hashing aims at learning a hashing model that is trained only by instances from seen categories but can generate well to those of unseen categories. Typically, it is achieved by utilizing a semantic embedding space to transfer knowledge from seen domain to unseen domain. Existing efforts mainly focus on single-modal retrieval task, especially Image-Based Image Retrieval (IBIR). Howeve...
متن کاملSelf-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval
Thanks to the success of deep learning, cross-modal retrieval has made significant progress recently. However, there still remains a crucial bottleneck: how to bridge the modality gap to further enhance the retrieval accuracy. In this paper, we propose a self-supervised adversarial hashing (SSAH) approach, which lies among the early attempts to incorporate adversarial learning into cross-modal ...
متن کاملHashGAN: Attention-aware Deep Adversarial Hashing for Cross Modal Retrieval
As the rapid growth of multi-modal data, hashing methods for cross-modal retrieval have received considerable attention. Deep-networks-based cross-modal hashing methods are appealing as they can integrate feature learning and hash coding into end-to-end trainable frameworks. However, it is still challenging to find content similarities between different modalities of data due to the heterogenei...
متن کاملCorrelation Hashing Network for Efficient Cross-Modal Retrieval
Due to the storage and retrieval efficiency, hashing has been widely deployed to approximate nearest neighbor search for large-scale multimedia retrieval. Cross-modal hashing, which improves the quality of hash coding by exploiting the semantic correlation across different modalities, has received increasing attention recently. For most existing cross-modal hashing methods, an object is first r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2022
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v36i9.21268